# Zeromutarts CTF Crypto Challenges

## The magic of rsa (100)

You were able to hear some whispering on the last crypto party!
*whisper* $d$ is 35181901. Keep it secret or we are doomed!


We were given 2 files for the challenge.

### 1) rsa.py

    #!/usr/bin/env python
import sys
n= 65354147
e = 13
d = ??

f = open( sys.argv , "r" )
for line in f:
line = int(line.strip())
# you'll have to insert the decrypt function for each line(number) here!
#dec = ...
print chr(dec)


### 2) rsa.txt

    32588732
56947340
16730166
16529146
17037091
9958499
18895626
49410873
58063242
16529146
18895626
30273022
58063242
30273022
60194095
9956852
58063242
44337129
16730166
5059543
40999214
39158796
5059543
58063242
54302449
9958499
58063242
8646641
16730166
51307370
16730166
57845836
16730166
34996934
32762958


If you read up about RSA decryption on Wikipedia, it’s pretty simple and straightforward to solve this challenge. You need $C$ = ciphertext (we got loads of it there in rsa.txt, just need to use one by one), $d$ = private key exponent (we got that as well), $n$ = modulus for both private and public keys. Thus, $M \equiv C^{d} \bmod n$

Here, I used sagemath cloud application to solve it as follows. You could actually save the following into a python script and run it.

    n = 65354147
d = 35181901
ctuple = [32588732,56947340,16730166,16529146,17037091,9958499,18895626,49410873,
58063242,16529146,18895626,30273022,58063242,30273022,60194095,9956852,58063242,
44337129,16730166,5059543,40999214,39158796,5059543,58063242,54302449,9958499,5806
3242,8646641,16730166,51307370,16730166,57845836,16730166,34996934,32762958]
result = ""

for i in ctuple:
lol = pow(i, d, n)
result += chr(lol)
print "Result for http://zeromutarts.de/task/rsa_magic : " + result


*This one is important, we have no clue how to decrypt the secret message! Can you help us?*


We were given 2 files for this challenge as well.

### 1) rivest.py

    #!/usr/bin/env python
import sys
n= 80646413
e = 5

# You'll have to find the d yourself..
d = unknown

f = open( sys.argv , "r" )
for line in f:
line = int(line.strip())
# you'll have to insert the decrypt function for each line(number) here!
#dec = ...
print chr(dec)

# might come handy
def xgcd(a,b):
"""Extended GCD:
Returns (gcd, x, y) where gcd is the greatest common divisor of a and b
with the sign of b if b is nonzero, and with the sign of a if b is 0.
The numbers x,y are such that gcd = ax+by."""
prevx, x = 1, 0;  prevy, y = 0, 1
while b:
q, r = divmod(a,b)
x, prevx = prevx - q*x, x
y, prevy = prevy - q*y, y
a, b = b, r
return a, prevx, prevy

def modinv(a, m):
"""Modular multiplicative inverse, i.e. a^-1 = 1 (mod m)"""
a, u, v = xgcd(a, m)
if a <> 1:
raise Exception('No inverse: %d (mod %d)' % (a, m))
return u


### 2) rivest.txt

    72895864
15633602
38820479
60303684
7458706
60299530
20682371
54642689
26066811
32615038
35349196
76400140
38820479
56463813
80491201
76400140
35349196
69567074
26066811
76400140
74270178
76127647
76127647
15633602
76400140
60303684
38820479
56463813
60303684
76400140
72844764
76127647
69302434
15633602
80491201
76400140
6809712
26066811
76400140
42498798
60299530
76127647
69302434
80491201
33234011


This time we seriously need sagemath to solve it. :) Since we don’t know the $d$ to decrypt the messages for this challenge, we first need to find the $p$ & $q$ to get $d$. The most straightforward way to get that is to use Fermat’s Factorization method.

I used the formula from here: http://facthacks.cr.yp.to/fermat.html to get $p$ & $q$.

    n = 80646413
e = 5
ctuple = [72895864,15633602,38820479,60303684,7458706,60299530,20682371,54642689,
26066811,32615038,35349196,76400140,38820479,56463813,80491201,76400140,35349196,
69567074,26066811,76400140,74270178,76127647,76127647,15633602,76400140,60303684,
38820479,56463813,60303684,76400140,72844764,76127647,69302434,15633602,80491201,
76400140,6809712,26066811,76400140,42498798,60299530,76127647,69302434,80491201,
33234011]
def fermatfactor(N):
if N <= 0: return [N]
if is_even(N): return [2,N/2]
a = ceil(sqrt(N))
while not is_square(a^2-N):
a = a + 1
b = sqrt(a^2-N)
return [a - b,a + b]
p, q = fermatfactor(n)

phi=(p-1)*(q-1)
d=pow(e,-1,phi)

result = ""
for i in ctuple:
lol=pow(i,d,n)
result+=chr(lol) 